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1.1  LTTng and Erlang/OTP

1    Runtime Tools User's Guide

Runtime Tools

1.1  LTTng and Erlang/OTP
1.1.1  Introduction
The Linux Trace Toolkit: next generation is an open source system software package for correlated tracing of the
Linux kernel, user applications and libraries.

For more information, please visit http://lttng.org

1.1.2  Building Erlang/OTP with LTTng support
Configure and build Erlang with LTTng support:

For LTTng to work properly with Erlang/OTP you need the following packages installed:

• LTTng-tools: a command line interface to control tracing sessions.

• LTTng-UST: user space tracing library.

On Ubuntu this can be installed via aptitude:

$ sudo aptitude install lttng-tools liblttng-ust-dev

See Installing LTTng for more information on how to install LTTng on your system.

After LTTng is properly installed on the system Erlang/OTP can be built with LTTng support.

$ ./configure --with-dynamic-trace=lttng
$ make 

1.1.3  Dyntrace Tracepoints
All tracepoints are in the domain of org_erlang_dyntrace

All Erlang types are the string equivalent in LTTng.

process_spawn

• pid : string :: Process ID. Ex. "<0.131.0>"

• parent : string :: Process ID. Ex. "<0.131.0>"

• entry : string :: Code Location. Ex. "lists:sort/1"

Available through erlang:trace/3 with trace flag procs and {tracer,dyntrace,[]} as tracer module.

Example:

process_spawn: { cpu_id = 3 }, { pid = "<0.131.0>", parent = "<0.130.0>", entry = "erlang:apply/2" }

process_link

• to : string :: Process ID or Port ID. Ex. "<0.131.0>"

• from : string :: Process ID or Port ID. Ex. "<0.131.0>"
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1.1  LTTng and Erlang/OTP

• type : string :: "link" | "unlink"

Available through erlang:trace/3 with trace flag procs and {tracer,dyntrace,[]} as tracer module.

Example:

process_link: { cpu_id = 3 }, { from = "<0.130.0>", to = "<0.131.0>", type = "link" }

process_exit

• pid : string :: Process ID. Ex. "<0.131.0>"

• reason : string :: Exit reason. Ex. "normal"

Available through erlang:trace/3 with trace flag procs and {tracer,dyntrace,[]} as tracer module.

Example:

process_exit: { cpu_id = 3 }, { pid = "<0.130.0>", reason = "normal" }

process_register

• pid : string :: Process ID. Ex. "<0.131.0>"

• name : string :: Registered name. Ex. "logger"

• type : string :: "register" | "unregister"

Example:

process_register: { cpu_id = 0 }, { pid = "<0.128.0>", name = "dyntrace_lttng_SUITE" type = "register" }

process_scheduled

• pid : string :: Process ID. Ex. "<0.131.0>"

• entry : string :: Code Location. Ex. "lists:sort/1"

• type : string :: "in" | "out" | "in_exiting" | "out_exiting" | "out_exited"

Available through erlang:trace/3 with trace flag running and {tracer,dyntrace,[]} as tracer module.

Example:

process_scheduled: { cpu_id = 0 }, { pid = "<0.136.0>", entry = "erlang:apply/2", type = "in" }

port_open

• pid : string :: Process ID. Ex. "<0.131.0>"

• driver : string :: Driver name. Ex. "tcp_inet"

• port : string :: Port ID. Ex. "#Port<0.1031>"

Available through erlang:trace/3 with trace flag ports and {tracer,dyntrace,[]} as tracer module.

Example:

port_open: { cpu_id = 5 }, { pid = "<0.131.0>", driver = "'/bin/sh -s unix:cmd'", port = "#Port<0.1887>" }

port_exit

• port : string :: Port ID. Ex. "#Port<0.1031>"

• reason : string :: Exit reason. Ex. "normal"

Available through erlang:trace/3 with trace flag ports and {tracer,dyntrace,[]} as tracer module.

Example:

port_exit: { cpu_id = 5 }, { port = "#Port<0.1887>", reason = "normal" }
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port_link

• to : string :: Process ID. Ex. "<0.131.0>"

• from : string :: Process ID. Ex. "<0.131.0>"

• type : string :: "link" | "unlink"

Available through erlang:trace/3 with trace flag ports and {tracer,dyntrace,[]} as tracer module.

Example:

port_link: { cpu_id = 5 }, { from = "#Port<0.1887>", to = "<0.131.0>", type = "unlink" }

port_scheduled

Available through erlang:trace/3 with trace flag running and {tracer,dyntrace,[]} as tracer module.

• port : string :: Port ID. Ex. "#Port<0.1031>"

• entry : string :: Callback. Ex. "open"

• type : string :: "in" | "out" | "in_exiting" | "out_exiting" | "out_exited"

Example:

port_scheduled: { cpu_id = 5 }, { pid = "#Port<0.1905>", entry = "close", type = "out" }

Available through erlang:trace/3 with trace flag running and {tracer,dyntrace,[]} as tracer module.

function_call

• pid : string :: Process ID. Ex. "<0.131.0>"

• entry : string :: Code Location. Ex. "lists:sort/1"

• depth : integer :: Stack depth. Ex. 0

Available through erlang:trace/3 with trace flag call and {tracer,dyntrace,[]} as tracer module.

Example:

function_call: { cpu_id = 5 }, { pid = "<0.145.0>", entry = "dyntrace_lttng_SUITE:'-t_call/1-fun-1-'/0", depth = 0 }

function_return

• pid : string :: Process ID. Ex. "<0.131.0>"

• entry : string :: Code Location. Ex. "lists:sort/1"

• depth : integer :: Stack depth. Ex. 0

Available through erlang:trace/3 with trace flag call or return_to and {tracer,dyntrace,[]} as
tracer module.

Example:

function_return: { cpu_id = 5 }, { pid = "<0.145.0>", entry = "dyntrace_lttng_SUITE:waiter/0", depth = 0 }

function_exception

• pid : string :: Process ID. Ex. "<0.131.0>"

• entry : string :: Code Location. Ex. "lists:sort/1"

• class : string :: Error reason. Ex. "error"

Available through erlang:trace/3 with trace flag call and {tracer,dyntrace,[]} as tracer module.

Example:

function_exception: { cpu_id = 5 }, { pid = "<0.144.0>", entry = "t:call_exc/1", class = "error" }
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message_send

• from : string :: Process ID or Port ID. Ex. "<0.131.0>"

• to : string :: Process ID or Port ID. Ex. "<0.131.0>"

• message : string :: Message sent. Ex. "{<0.162.0>,ok}"

Available through erlang:trace/3 with trace flag send and {tracer,dyntrace,[]} as tracer module.

Example:

message_send: { cpu_id = 3 }, { from = "#Port<0.1938>", to = "<0.160.0>", message = "{#Port<0.1938>,eof}" }

message_receive

• to : string :: Process ID or Port ID. Ex. "<0.131.0>"

• message : string :: Message received. Ex. "{<0.162.0>,ok}"

Available through erlang:trace/3 with trace flag 'receive' and {tracer,dyntrace,[]} as tracer
module.

Example:

message_receive: { cpu_id = 7 }, { to = "<0.167.0>", message = "{<0.165.0>,ok}" }

gc_minor_start

• pid : string :: Process ID. Ex. "<0.131.0>"

• need : integer :: Heap need. Ex. 2

• heap : integer :: Young heap word size. Ex. 233

• old_heap : integer :: Old heap word size. Ex. 233

Available through erlang:trace/3 with trace flag garbage_collection and {tracer,dyntrace,[]}
as tracer module.

Example:

gc_minor_start: { cpu_id = 0 }, { pid = "<0.172.0>", need = 0, heap = 610, old_heap = 0 }

gc_minor_end

• pid : string :: Process ID. Ex. "<0.131.0>"

• reclaimed : integer :: Heap reclaimed. Ex. 2

• heap : integer :: Young heap word size. Ex. 233

• old_heap : integer :: Old heap word size. Ex. 233

Available through erlang:trace/3 with trace flag garbage_collection and {tracer,dyntrace,[]}
as tracer module.

Example:

gc_minor_end: { cpu_id = 0 }, { pid = "<0.172.0>", reclaimed = 120, heap = 1598, old_heap = 1598 }

gc_major_start

• pid : string :: Process ID. Ex. "<0.131.0>"

• need : integer :: Heap need. Ex. 2

• heap : integer :: Young heap word size. Ex. 233

• old_heap : integer :: Old heap word size. Ex. 233
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Available through erlang:trace/3 with trace flag garbage_collection and {tracer,dyntrace,[]}
as tracer module.

Example:

gc_major_start: { cpu_id = 0 }, { pid = "<0.172.0>", need = 8, heap = 2586, old_heap = 1598 }

gc_major_end

• pid : string :: Process ID. Ex. "<0.131.0>"

• reclaimed : integer :: Heap reclaimed. Ex. 2

• heap : integer :: Young heap word size. Ex. 233

• old_heap : integer :: Old heap word size. Ex. 233

Available through erlang:trace/3 with trace flag garbage_collection and {tracer,dyntrace,[]}
as tracer module.

Example:

gc_major_end: { cpu_id = 0 }, { pid = "<0.172.0>", reclaimed = 240, heap = 4185, old_heap = 0 }

1.1.4  BEAM Tracepoints
All tracepoints are in the domain of org_erlang_otp

All Erlang types are the string equivalent in LTTng.

driver_init

• driver : string :: Driver name. Ex. "tcp_inet"

• major : integer :: Major version. Ex. 3

• minor : integer :: Minor version. Ex. 1

• flags : integer :: Flags. Ex. 1

Example:

driver_init: { cpu_id = 2 }, { driver = "caller_drv", major = 3, minor = 3, flags = 1 }

driver_start

• pid : string :: Process ID. Ex. "<0.131.0>"

• driver : string :: Driver name. Ex. "tcp_inet"

• port : string :: Port ID. Ex. "#Port<0.1031>"

Example:

driver_start: { cpu_id = 2 }, { pid = "<0.198.0>", driver = "caller_drv", port = "#Port<0.3676>" }

driver_output

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

• bytes : integer :: Size of data returned. Ex. 82

Example:

driver_output: { cpu_id = 2 }, { pid = "<0.198.0>", port = "#Port<0.3677>", driver = "/bin/sh -s unix:cmd", bytes = 36 }

driver_outputv
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• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

• bytes : integer :: Size of data returned. Ex. 82

Example:

driver_outputv: { cpu_id = 5 }, { pid = "<0.194.0>", port = "#Port<0.3663>", driver = "tcp_inet", bytes = 3 }

driver_ready_input

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

Example:

driver_ready_input: { cpu_id = 5 }, { pid = "<0.189.0>", port = "#Port<0.3637>", driver = "inet_gethost 4 " }

driver_ready_output

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

Example:

driver_ready_output: { cpu_id = 5 }, { pid = "<0.194.0>", port = "#Port<0.3663>", driver = "tcp_inet" }

driver_timeout

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

Example:

driver_timeout: { cpu_id = 5 }, { pid = "<0.196.0>", port = "#Port<0.3664>", driver = "tcp_inet" }

driver_stop_select

• driver : string :: Driver name. Ex. "tcp_inet"

Example:

driver_stop_select: { cpu_id = 5 }, { driver = "unknown" }

driver_flush

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

Example:

driver_flush: { cpu_id = 7 }, { pid = "<0.204.0>", port = "#Port<0.3686>", driver = "tcp_inet" }

driver_stop

• pid : string :: Process ID. Ex. "<0.131.0>"
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• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

Example:

driver_stop: { cpu_id = 5 }, { pid = "[]", port = "#Port<0.3673>", driver = "tcp_inet" }

driver_process_exit

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

driver_ready_async

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

Example:

driver_ready_async: { cpu_id = 3 }, { pid = "<0.181.0>", port = "#Port<0.3622>", driver = "tcp_inet" }

driver_call

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

• command : integer :: Command integer. Ex. 1

• bytes : integer :: Size of data returned. Ex. 82

Example:

driver_call: { cpu_id = 2 }, { pid = "<0.202.0>", port = "#Port<0.3676>", driver = "caller_drv", command = 0, bytes = 2 }

driver_control

• pid : string :: Process ID. Ex. "<0.131.0>"

• port : string :: Port ID. Ex. "#Port<0.1031>"

• driver : string :: Driver name. Ex. "tcp_inet"

• command : integer :: Command integer. Ex. 1

• bytes : integer :: Size of data returned. Ex. 82

Example:

driver_control: { cpu_id = 3 }, { pid = "<0.32767.8191>", port = "#Port<0.0>", driver = "forker", command = 83, bytes = 32 }

carrier_create

• type : string :: Carrier type. Ex. "ets_alloc"

• instance : integer :: Allocator instance. Ex. 1

• size : integer :: Carrier size. Ex. 262144

• mbc_carriers : integer :: Number of multiblock carriers in instance. Ex. 3

• mbc_carriers_size : integer :: Total size of multiblock blocks carriers in instance. Ex. 1343488

• mbc_blocks : integer :: Number of multiblock blocks in instance. Ex. 122

• mbc_blocks_size : integer :: Total size of all multiblock blocks in instance. Ex. 285296
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• sbc_carriers : integer :: Number of singleblock carriers in instance. Ex. 1

• sbc_carriers_size : integer :: Total size of singleblock blocks carriers in instance. Ex. 1343488

• sbc_blocks : integer :: Number of singleblocks in instance. Ex. 1

• sbc_blocks_size : integer :: Total size of all singleblock blocks in instance. Ex. 285296

Example:

carrier_create: { cpu_id = 2 }, { type = "ets_alloc", instance = 7, size = 2097152, mbc_carriers = 4, mbc_carriers_size = 3440640, mbc_blocks = 526, mbc_blocks_size = 1278576, sbc_carriers = 0, sbc_carriers_size = 0, sbc_blocks = 0, sbc_blocks_size = 0 }

carrier_destroy

• type : string :: Carrier type. Ex. "ets_alloc"

• instance : integer :: Allocator instance. Ex. 1

• size : integer :: Carrier size. Ex. 262144

• mbc_carriers : integer :: Number of multiblock carriers in instance. Ex. 3

• mbc_carriers_size : integer :: Total size of multiblock blocks carriers in instance. Ex. 1343488

• mbc_blocks : integer :: Number of multiblock blocks in instance. Ex. 122

• mbc_blocks_size : integer :: Total size of all multiblock blocks in instance. Ex. 285296

• sbc_carriers : integer :: Number of singleblock carriers in instance. Ex. 1

• sbc_carriers_size : integer :: Total size of singleblock blocks carriers in instance. Ex. 1343488

• sbc_blocks : integer :: Number of singleblocks in instance. Ex. 1

• sbc_blocks_size : integer :: Total size of all singleblock blocks in instance. Ex. 285296

Example:

carrier_destroy: { cpu_id = 6 }, { type = "ets_alloc", instance = 7, size = 262144, mbc_carriers = 3, mbc_carriers_size = 3178496, mbc_blocks = 925, mbc_blocks_size = 2305336, sbc_carriers = 0, sbc_carriers_size = 0, sbc_blocks = 0, sbc_blocks_size = 0 }

carrier_pool_put

• type : string :: Carrier type. Ex. "ets_alloc"

• instance : integer :: Allocator instance. Ex. 1

• size : integer :: Carrier size. Ex. 262144

Example:

carrier_pool_put: { cpu_id = 3 }, { type = "ets_alloc", instance = 5, size = 1048576 }

carrier_pool_get

• type : string :: Carrier type. Ex. "ets_alloc"

• instance : integer :: Allocator instance. Ex. 1

• size : integer :: Carrier size. Ex. 262144

Example:

carrier_pool_get: { cpu_id = 7 }, { type = "ets_alloc", instance = 4, size = 3208 }

1.1.5  Example of process tracing
An example of process tracing of os_mon and friends.

Clean start of lttng in a bash shell.
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$ lttng create erlang-demo
Spawning a session daemon
Session erlang-demo created.
Traces will be written in /home/egil/lttng-traces/erlang-demo-20160526-165920

Start an Erlang node with lttng enabled.

$ erl
Erlang/OTP 19 [erts-8.0] [source-4d7b24d] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false] [lttng]

Eshell V8.0  (abort with ^G)
1>

Load the dyntrace module.

1> l(dyntrace).
{module,dyntrace}

All tracepoints via dyntrace are now visible and can be listed through lttng list -u.

Enable the process_register LTTng tracepoint for Erlang.

$ lttng enable-event -u org_erlang_dyntrace:process_register
UST event org_erlang_dyntrace:process_register created in channel channel0

Enable process tracing for new processes and use dyntrace as tracer backend.

2> erlang:trace(new,true,[procs,{tracer,dyntrace,[]}]).
0

Start LTTng tracing.

$ lttng start
Tracing started for session erlang-demo

Start the os_mon application in Erlang.

3> application:ensure_all_started(os_mon).
{ok,[sasl,os_mon]}

Stop LTTng tracing and view the result.

$ lttng stop
Tracing stopped for session erlang-demo
$ lttng view
[17:20:42.561168759] (+?.?????????) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.66.0>", name = "sasl_sup", type = "register" }
[17:20:42.561215519] (+0.000046760) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.67.0>", name = "sasl_safe_sup", type = "register" }
[17:20:42.562149024] (+0.000933505) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.68.0>", name = "alarm_handler", type = "register" }
[17:20:42.571035803] (+0.008886779) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.69.0>", name = "release_handler", type = "register" }
[17:20:42.574939868] (+0.003904065) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.74.0>", name = "os_mon_sup", type = "register" }
[17:20:42.576818712] (+0.001878844) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.75.0>", name = "disksup", type = "register" }
[17:20:42.580032013] (+0.003213301) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.76.0>", name = "memsup", type = "register" }
[17:20:42.583046339] (+0.003014326) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.78.0>", name = "cpu_sup", type = "register" }
[17:20:42.586206242] (+0.003159903) elxd1168lx9 org_erlang_dyntrace:process_register: \
    { cpu_id = 5 }, { pid = "<0.82.0>", name = "timer_server", type = "register" }
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1.2  DTrace and Erlang/OTP
1.2.1  History
The first implementation of DTrace probes for the Erlang virtual machine was presented at the 2008 Erlang
User Conference. That work, based on the Erlang/OTP R12 release, was discontinued due to what appears to be
miscommunication with the original developers.

Several users have created Erlang port drivers, linked-in drivers, or NIFs that allow Erlang code to try to activate a
probe, e.g. foo_module:dtrace_probe("message goes here!").

1.2.2  Goals
• Annotate as much of the Erlang VM as is practical.

• The initial goal is to trace file I/O operations.

• Support all platforms that implement DTrace: OS X, Solaris, and (I hope) FreeBSD and NetBSD.

• To the extent that it's practical, support SystemTap on Linux via DTrace provider compatibility.

• Allow Erlang code to supply annotations.

1.2.3  Supported platforms
• OS X 10.6.x / Snow Leopard, OS X 10.7.x / Lion and probably newer versions.

• Solaris 10. I have done limited testing on Solaris 11 and OpenIndiana release 151a, and both appear to work.

• FreeBSD 9.0 and 10.0.

• Linux via SystemTap compatibility. Please see $ERL_TOP/HOWTO/SYSTEMTAP.md for more details.

Just add the --with-dynamic-trace=dtrace option to your command when you run the configure script.
If you are using systemtap, the configure option is --with-dynamic-trace=systemtap

1.2.4  Status
As of R15B01, the dynamic trace code is included in the OTP source distribution, although it's considered experimental.
The main development of the dtrace code still happens outside of Ericsson, but there is no need to fetch a patched
version of the OTP source to get the basic functionality.

1.2.5  DTrace probe specifications
Probe specifications can be found in erts/emulator/beam/erlang_dtrace.d, and a few example scripts
can be found under lib/runtime_tools/examples/.

1.3  SystemTap and Erlang/OTP
1.3.1  Introduction
SystemTap is DTrace for Linux. In fact Erlang's SystemTap support is built using SystemTap's DTrace compatibility's
layer. For an introduction to Erlang DTrace support read $ERL_TOP/HOWTO/DTRACE.md.
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1.3.2  Requisites
• Linux Kernel with UTRACE support

check for UTRACE support in your current kernel:

# grep CONFIG_UTRACE /boot/config-`uname -r`
CONFIG_UTRACE=y

Fedora 16 is known to contain UTRACE, for most other Linux distributions a custom build kernel will be required.
Check Fedora's SystemTap documentation for additional required packages (e.g. Kernel Debug Symbols)

• SystemTap > 1.6

A the time of writing this, the latest released version of SystemTap is version 1.6. Erlang's DTrace support requires
a MACRO that was introduced after that release. So either get a newer release or build SystemTap from git
yourself (see: http://sourceware.org/systemtap/getinvolved.html)

1.3.3  Building Erlang
Configure and build Erlang with SystemTap support:

# ./configure --with-dynamic-trace=systemtap + whatever args you need
# make

1.3.4  Testing
SystemTap, unlike DTrace, needs to know what binary it is tracing and has to be able to read that binary before it
starts tracing. Your probe script therefore has to reference the correct beam emulator and stap needs to be able to find
that binary. The examples are written for "beam", but other versions such as "beam.smp" or "beam.debug.smp" might
exist (depending on your configuration). Make sure you either specify the full the path of the binary in the probe or
your "beam" binary is in the search path.

All available probes can be listed like this:

# stap -L 'process("beam").mark("*")'

or:

# PATH=/path/to/beam:$PATH stap -L 'process("beam").mark("*")'

Probes in the dtrace.so NIF library like this:

# PATH=/path/to/dtrace/priv/lib:$PATH stap -L 'process("dtrace.so").mark("*")'

1.3.5  Running SystemTap scripts
Adjust the process("beam") reference to your beam version and attach the script to a running "beam" instance:

# stap /path/to/probe/script/port1.systemtap -x <pid of beam>
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2    Reference Manual

Runtime_Tools provides low footprint tracing/debugging tools suitable for inclusion in a production system.
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runtime_tools

runtime_tools
Application

This chapter describes the Runtime_Tools application in OTP, which provides low footprint tracing/debugging tools
suitable for inclusion in a production system.

Configuration
There are currently no configuration parameters available for this application.

SEE ALSO
application(3)
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dbg
Erlang module

This module implements a text based interface to the trace/3 and the trace_pattern/2 BIFs. It makes it
possible to trace functions, processes, ports and messages.

To quickly get started on tracing function calls you can use the following code in the Erlang shell:

1> dbg:tracer(). %% Start the default trace message receiver
{ok,<0.36.0>}
2> dbg:p(all, c). %% Setup call (c) tracing on all processes
{ok,[{matched,nonode@nohost,26}]}
3> dbg:tp(lists, seq, x). %% Setup an exception return trace (x) on lists:seq
{ok,[{matched,nonode@nohost,2},{saved,x}]}
4> lists:seq(1,10).
(<0.34.0>) call lists:seq(1,10)
(<0.34.0>) returned from lists:seq/2 -> [1,2,3,4,5,6,7,8,9,10]
[1,2,3,4,5,6,7,8,9,10]
    

For more examples of how to use dbg from the Erlang shell, see the simple example section.

The utilities are also suitable to use in system testing on large systems, where other tools have too much impact on the
system performance. Some primitive support for sequential tracing is also included, see the advanced topics section.

Exports

fun2ms(LiteralFun) -> MatchSpec
Types:

LiteralFun = fun() literal

MatchSpec = term()

Pseudo function that by means of a parse_transform translates the literal fun() typed as parameter in the
function call to a match specification as described in the match_spec manual of ERTS users guide. (With literal
I mean that the fun() needs to textually be written as the parameter of the function, it cannot be held in a variable
which in turn is passed to the function).

The parse transform is implemented in the module ms_transform and the source must include the file
ms_transform.hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line -
include_lib("stdlib/include/ms_transform.hrl"). to the source file.

The fun() is very restricted, it can take only a single parameter (the parameter list to match), a sole variable or a
list. It needs to use the is_XXX guard tests and one cannot use language constructs that have no representation in
a match_spec (like if, case, receive etc). The return value from the fun will be the return value of the resulting
match_spec.

Example:

1> dbg:fun2ms(fun([M,N]) when N > 3 -> return_trace() end).
[{['$1','$2'],[{'>','$2',3}],[{return_trace}]}]

Variables from the environment can be imported, so that this works:
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2> X=3.
3
3> dbg:fun2ms(fun([M,N]) when N > X  -> return_trace() end).
[{['$1','$2'],[{'>','$2',{const,3}}],[{return_trace}]}]

The imported variables will be replaced by match_spec const expressions, which is consistent with the static scoping
for Erlang fun()s. Local or global function calls cannot be in the guard or body of the fun however. Calls to builtin
match_spec functions of course is allowed:

4> dbg:fun2ms(fun([M,N]) when N > X, is_atomm(M)  -> return_trace() end).
Error: fun containing local erlang function calls ('is_atomm' called in guard)\
 cannot be translated into match_spec
{error,transform_error}
5> dbg:fun2ms(fun([M,N]) when N > X, is_atom(M)  -> return_trace() end).
[{['$1','$2'],[{'>','$2',{const,3}},{is_atom,'$1'}],[{return_trace}]}]

As you can see by the example, the function can be called from the shell too. The fun() needs to be literally in the
call when used from the shell as well. Other means than the parse_transform are used in the shell case, but more or
less the same restrictions apply (the exception being records, as they are not handled by the shell).

Warning:

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime
(with a badarg). The module dbg actually exports a function with this name, but it should never really be called
except for when using the function in the shell. If the parse_transform is properly applied by including the
ms_transform.hrl header file, compiled code will never call the function, but the function call is replaced
by a literal match_spec.

More information is provided by the ms_transform manual page in STDLIB.

h() -> ok
h stands for help. Gives a list of items for brief online help.

h(Item) -> ok
Types:

Item = atom()

h stands for help. Gives a brief help text for functions in the dbg module. The available items can be listed with
dbg:h/0.

p(Item) -> {ok, MatchDesc} | {error, term()}
Equivalent to p(Item, [m]).

p(Item, Flags) -> {ok, MatchDesc} | {error, term()}
Types:

MatchDesc = [MatchNum]

MatchNum = {matched, node(), integer()} | {matched, node(), 0, RPCError}

RPCError = term()

p stands for process. Traces Item in accordance to the value specified by Flags. The variation of Item is listed
below:
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pid() or port()
The corresponding process or port is traced. The process or port may be a remote process or port (on another
Erlang node). The node must be in the list of traced nodes (see n/1 and tracer/3).

all
All processes and ports in the system as well as all processes and ports created hereafter are to be traced.

processes
All processes in the system as well as all processes created hereafter are to be traced.

ports
All ports in the system as well as all ports created hereafter are to be traced.

new
All processes and ports created after the call is are to be traced.

new_processes
All processes created after the call is are to be traced.

new_ports
All ports created after the call is are to be traced.

existing
All existing processes and ports are traced.

existing_processes
All existing processes are traced.

existing_ports
All existing ports are traced.

atom()
The process or port with the corresponding registered name is traced. The process or port may be a remote
process (on another Erlang node). The node must be added with the n/1 or tracer/3 function.

integer()
The process <0.Item.0> is traced.

{X, Y, Z}
The process <X.Y.Z> is traced.

string()
If the Item is a string "<X.Y.Z>" as returned from pid_to_list/1, the process <X.Y.Z> is traced.

When enabling an Item that represents a group of processes, the Item is enabled on all nodes added with the n/1
or tracer/3 function.

Flags can be a single atom, or a list of flags. The available flags are:

s (send)

Traces the messages the process or port sends.

r (receive)

Traces the messages the process or port receives.

m (messages)

Traces the messages the process or port receives and sends.

c (call)

Traces global function calls for the process according to the trace patterns set in the system (see tp/2).

p (procs)

Traces process related events to the process.

ports

Traces port related events to the port.
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sos (set on spawn)

Lets all processes created by the traced process inherit the trace flags of the traced process.

sol (set on link)

Lets another process, P2, inherit the trace flags of the traced process whenever the traced process links to P2.

sofs (set on first spawn)

This is the same as sos, but only for the first process spawned by the traced process.

sofl (set on first link)

This is the same as sol, but only for the first call to link/1 by the traced process.

all

Sets all flags except silent.

clear

Clears all flags.

The list can also include any of the flags allowed in erlang:trace/3

The function returns either an error tuple or a tuple {ok, List}. The List consists of specifications of how many
processes and ports that matched (in the case of a pure pid() exactly 1). The specification of matched processes is
{matched, Node, N}. If the remote processor call, rpc, to a remote node fails, the rpc error message is delivered
as a fourth argument and the number of matched processes are 0. Note that the result {ok, List} may contain a list
where rpc calls to one, several or even all nodes failed.

c(Mod, Fun, Args)
Equivalent to c(Mod, Fun, Args, all).

c(Mod, Fun, Args, Flags)
c stands for call. Evaluates the expression apply(Mod, Fun, Args) with the trace flags in Flags set. This is
a convenient way to trace processes from the Erlang shell.

i() -> ok
i stands for information. Displays information about all traced processes and ports.

tp(Module,MatchSpec)
Same as tp({Module, '_', '_'}, MatchSpec)

tp(Module,Function,MatchSpec)
Same as tp({Module, Function, '_'}, MatchSpec)

tp(Module, Function, Arity, MatchSpec)
Same as tp({Module, Function, Arity}, MatchSpec)

tp({Module, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error, term()}
Types:

Module = atom() | '_'

Function = atom() | '_'
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Arity = integer() |'_'

MatchSpec = integer() | Built-inAlias | [] | match_spec()

Built-inAlias = x | c | cx

MatchDesc = [MatchInfo]

MatchInfo = {saved, integer()} | MatchNum

MatchNum = {matched, node(), integer()} | {matched, node(), 0, RPCError}

tp stands for trace pattern. This function enables call trace for one or more functions. All exported functions matching
the {Module, Function, Arity} argument will be concerned, but the match_spec() may further narrow
down the set of function calls generating trace messages.

For a description of the match_spec() syntax, please turn to the User's guide part of the online documentation
for the runtime system (erts). The chapter Match Specifications in Erlang explains the general match specification
"language". The most common generic match specifications used can be found as Built-inAlias', see ltp/0
below for details.

The Module, Function and/or Arity parts of the tuple may be specified as the atom '_' which is a "wild-card" matching
all modules/functions/arities. Note, if the Module is specified as '_', the Function and Arity parts have to be specified
as '_' too. The same holds for the Functions relation to the Arity.

All nodes added with n/1 or tracer/3 will be affected by this call, and if Module is not '_' the module will be
loaded on all nodes.

The function returns either an error tuple or a tuple {ok, List}. The List consists of specifications of how many
functions that matched, in the same way as the processes and ports are presented in the return value of p/2.

There may be a tuple {saved, N} in the return value, if the MatchSpec is other than []. The integer N may then be
used in subsequent calls to this function and will stand as an "alias" for the given expression. There are also a couple
of built-in aliases for common expressions, see ltp/0 below for details.

If an error is returned, it can be due to errors in compilation of the match specification. Such errors are presented as a
list of tuples {error, string()} where the string is a textual explanation of the compilation error. An example:

(x@y)4> dbg:tp({dbg,ltp,0},[{[],[],[{message, two, arguments}, {noexist}]}]).
{error,
 [{error,"Special form 'message' called with wrong number of
          arguments in {message,two,arguments}."},
  {error,"Function noexist/1 does_not_exist."}]}

tpl(Module,MatchSpec)
Same as tpl({Module, '_', '_'}, MatchSpec)

tpl(Module,Function,MatchSpec)
Same as tpl({Module, Function, '_'}, MatchSpec)

tpl(Module, Function, Arity, MatchSpec)
Same as tpl({Module, Function, Arity}, MatchSpec)

tpl({Module, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error,
term()}
tpl stands for trace pattern local. This function works as tp/2, but enables tracing for local calls (and local functions)
as well as for global calls (and functions).
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tpe(Event, MatchSpec) -> {ok, MatchDesc} | {error, term()}
Types:

Event = send | 'receive'

MatchSpec = integer() | Built-inAlias | [] | match_spec()

Built-inAlias = x | c | cx

MatchDesc = [MatchInfo]

MatchInfo = {saved, integer()} | MatchNum

MatchNum = {matched, node(), 1} | {matched, node(), 0, RPCError}

tpe stands for trace pattern event. This function associates a match specification with trace event send or
'receive'. By default all executed send and 'receive' events are traced if enabled for a process. A match
specification can be used to filter traced events based on sender, receiver and/or message content.

For a description of the match_spec() syntax, please turn to the User's guide part of the online documentation
for the runtime system (erts). The chapter Match Specifications in Erlang explains the general match specification
"language".

For send, the matching is done on the list [Receiver, Msg]. Receiver is the process or port identity of the
receiver and Msg is the message term. The pid of the sending process can be accessed with the guard function self/0.

For 'receive', the matching is done on the list [Node, Sender, Msg]. Node is the node name of the sender.
Sender is the process or port identity of the sender, or the atom undefined if the sender is not known (which may
be the case for remote senders). Msg is the message term. The pid of the receiving process can be accessed with the
guard function self/0.

All nodes added with n/1 or tracer/3 will be affected by this call.

The return value is the same as for tp/2. The number of matched events are never larger than 1 as tpe/2 does not
accept any form of wildcards for argument Event.

ctp()
Same as ctp({'_', '_', '_'})

ctp(Module)
Same as ctp({Module, '_', '_'})

ctp(Module, Function)
Same as ctp({Module, Function, '_'})

ctp(Module, Function, Arity)
Same as ctp({Module, Function, Arity})

ctp({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Types:

Module = atom() | '_'

Function = atom() | '_'

Arity = integer() | '_'

MatchDesc = [MatchNum]

MatchNum = {matched, node(), integer()} | {matched, node(), 0, RPCError}
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ctp stands for clear trace pattern. This function disables call tracing on the specified functions. The semantics of
the parameter is the same as for the corresponding function specification in tp/2 or tpl/2. Both local and global
call trace is disabled.

The return value reflects how many functions that matched, and is constructed as described in tp/2. No tuple
{saved, N} is however ever returned (for obvious reasons).

ctpl()
Same as ctpl({'_', '_', '_'})

ctpl(Module)
Same as ctpl({Module, '_', '_'})

ctpl(Module, Function)
Same as ctpl({Module, Function, '_'})

ctpl(Module, Function, Arity)
Same as ctpl({Module, Function, Arity})

ctpl({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
ctpl stands for clear trace pattern local. This function works as ctp/1, but only disables tracing set up with tpl/2
(not with tp/2).

ctpg()
Same as ctpg({'_', '_', '_'})

ctpg(Module)
Same as ctpg({Module, '_', '_'})

ctpg(Module, Function)
Same as ctpg({Module, Function, '_'})

ctpg(Module, Function, Arity)
Same as ctpg({Module, Function, Arity})

ctpg({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
ctpg stands for clear trace pattern global. This function works as ctp/1, but only disables tracing set up with tp/2
(not with tpl/2).

ctpe(Event) -> {ok, MatchDesc} | {error, term()}
Types:

Event = send | 'receive'

MatchDesc = [MatchNum]

MatchNum = {matched, node(), 1} | {matched, node(), 0, RPCError}
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ctpe stands for clear trace pattern event. This function clears match specifications for the specified trace event (send
or 'receive'). It will revert back to the default behavior of tracing all triggered events.

The return value follow the same style as for ctp/1.

ltp() -> ok
ltp stands for list trace patterns. Use this function to recall all match specifications previously used in the session
(i. e. previously saved during calls to tp/2, and built-in match specifications. This is very useful, as a complicated
match_spec can be quite awkward to write. Note that the match specifications are lost if stop/0 is called.

Match specifications used can be saved in a file (if a read-write file system is present) for use in later debugging
sessions, see wtp/1 and rtp/1

There are three built-in trace patterns: exception_trace, caller_trace and caller_exception_trace
(or x, c and cx respectively). Exception trace sets a trace which will show function names, parameters, return values
and exceptions thrown from functions. Caller traces display function names, parameters and information about which
function called it. An example using a built-in alias:

(x@y)4> dbg:tp(lists,sort,cx).
{ok,[{matched,nonode@nohost,2},{saved,cx}]}
(x@y)4> lists:sort([2,1]).
(<0.32.0>) call lists:sort([2,1]) ({erl_eval,do_apply,5})
(<0.32.0>) returned from lists:sort/1 -> [1,2]
[1,2]

dtp() -> ok
dtp stands for delete trace patterns. Use this function to "forget" all match specifications saved during calls to tp/2.
This is useful when one wants to restore other match specifications from a file with rtp/1. Use dtp/1 to delete
specific saved match specifications.

dtp(N) -> ok
Types:

N = integer()

dtp stands for delete trace pattern. Use this function to "forget" a specific match specification saved during calls
to tp/2.

wtp(Name) -> ok | {error, IOError}
Types:

Name = string()

IOError = term()

wtp stands for write trace patterns. This function will save all match specifications saved during the session (during
calls to tp/2) and built-in match specifications in a text file with the name designated by Name. The format of the
file is textual, why it can be edited with an ordinary text editor, and then restored with rtp/1.

Each match spec in the file ends with a full stop (.) and new (syntactically correct) match specifications can be added
to the file manually.

The function returns ok or an error tuple where the second element contains the I/O error that made the writing
impossible.
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rtp(Name) -> ok | {error, Error}
Types:

Name = string()

Error = term()

rtp stands for read trace patterns. This function reads match specifications from a file (possibly) generated by the
wtp/1 function. It checks the syntax of all match specifications and verifies that they are correct. The error handling
principle is "all or nothing", i. e. if some of the match specifications are wrong, none of the specifications are added
to the list of saved match specifications for the running system.

The match specifications in the file are merged with the current match specifications, so that no duplicates are
generated. Use ltp/0 to see what numbers were assigned to the specifications from the file.

The function will return an error, either due to I/O problems (like a non existing or non readable file) or due to file
format problems. The errors from a bad format file are in a more or less textual format, which will give a hint to what's
causing the problem.

n(Nodename) -> {ok, Nodename} | {error, Reason}
Types:

Nodename = atom()

Reason = term()

n stands for node. The dbg server keeps a list of nodes where tracing should be performed. Whenever a tp/2 call
or a p/2 call is made, it is executed for all nodes in this list including the local node (except for p/2 with a specific
pid() or port() as first argument, in which case the command is executed only on the node where the designated
process or port resides).

This function adds a remote node (Nodename) to the list of nodes where tracing is performed. It starts a tracer
process on the remote node, which will send all trace messages to the tracer process on the local node (via the Erlang
distribution). If no tracer process is running on the local node, the error reason no_local_tracer is returned. The
tracer process on the local node must be started with the tracer/0/2 function.

If Nodename is the local node, the error reason cant_add_local_node is returned.

If a trace port (see trace_port/2) is running on the local node, remote nodes cannot be traced with a tracer process.
The error reason cant_trace_remote_pid_to_local_port is returned. A trace port can however be started
on the remote node with the tracer/3 function.

The function will also return an error if the node Nodename is not reachable.

cn(Nodename) -> ok
Types:

Nodename = atom()

cn stands for clear node. Clears a node from the list of traced nodes. Subsequent calls to tp/2 and p/2 will not
consider that node, but tracing already activated on the node will continue to be in effect.

Returns ok, cannot fail.

ln() -> ok
ln stands for list nodes. Shows the list of traced nodes on the console.
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tracer() -> {ok, pid()} | {error, already_started}
This function starts a server on the local node that will be the recipient of all trace messages. All subsequent calls to
p/2 will result in messages sent to the newly started trace server.

A trace server started in this way will simply display the trace messages in a formatted way in the Erlang shell (i. e.
use io:format). See tracer/2 for a description of how the trace message handler can be customized.

To start a similar tracer on a remote node, use n/1.

tracer(Type, Data) -> {ok, pid()} | {error, Error}
Types:

Type = port | process | module

Data = PortGenerator | HandlerSpec | ModuleSpec

PortGenerator = fun() (no arguments)

Error = term()

HandlerSpec = {HandlerFun, InitialData}

HandlerFun = fun() (two arguments)

ModuleSpec = fun() (no arguments) | {TracerModule, TracerState}

TracerModule = atom()

InitialData = TracerState = term()

This function starts a tracer server with additional parameters on the local node. The first parameter, the Type, indicates
if trace messages should be handled by a receiving process (process), by a tracer port (port) or by a tracer module
(module). For a description about tracer ports see trace_port/2 and for a tracer modules see erl_tracer.

If Type is process, a message handler function can be specified (HandlerSpec). The handler function, which
should be a fun taking two arguments, will be called for each trace message, with the first argument containing the
message as it is and the second argument containing the return value from the last invocation of the fun. The initial
value of the second parameter is specified in the InitialData part of the HandlerSpec. The HandlerFun
may choose any appropriate action to take when invoked, and can save a state for the next invocation by returning it.

If Type is port, then the second parameter should be a fun which takes no arguments and returns a newly opened
trace port when called. Such a fun is preferably generated by calling trace_port/2.

if Type is module, then the second parameter should be either a tuple describing the erl_tracer module to be
used for tracing and the state to be used for that tracer module or a fun returning the same tuple.

If an error is returned, it can either be due to a tracer server already running ({error,already_started}) or
due to the HandlerFun throwing an exception.

To start a similar tracer on a remote node, use tracer/3.

tracer(Nodename, Type, Data) -> {ok, Nodename} | {error, Reason}
Types:

Nodename = atom()

This function is equivalent to tracer/2, but acts on the given node. A tracer is started on the node (Nodename)
and the node is added to the list of traced nodes.
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Note:

This function is not equivalent to n/1. While n/1 starts a process tracer which redirects all trace information
to a process tracer on the local node (i.e. the trace control node), tracer/3 starts a tracer of any type which is
independent of the tracer on the trace control node.

For details, see tracer/2.

trace_port(Type, Parameters) -> fun()
Types:

Type = ip | file

Parameters = Filename | WrapFilesSpec | IPPortSpec

Filename = string() | [string()] | atom()

WrapFilesSpec = {Filename, wrap, Suffix} | {Filename, wrap, Suffix,
WrapSize} | {Filename, wrap, Suffix, WrapSize, WrapCnt}

Suffix = string()

WrapSize = integer() >= 0 | {time, WrapTime}

WrapTime = integer() >= 1

WrapCnt = integer() >= 1

IpPortSpec = PortNumber | {PortNumber, QueSize}

PortNumber = integer()

QueSize = integer()

This function creates a trace port generating fun. The fun takes no arguments and returns a newly opened trace
port. The return value from this function is suitable as a second parameter to tracer/2, i.e. dbg:tracer(port,
dbg:trace_port(ip, 4711)).

A trace port is an Erlang port to a dynamically linked in driver that handles trace messages directly, without the
overhead of sending them as messages in the Erlang virtual machine.

Two trace drivers are currently implemented, the file and the ip trace drivers. The file driver sends all trace messages
into one or several binary files, from where they later can be fetched and processed with the trace_client/2
function. The ip driver opens a TCP/IP port where it listens for connections. When a client (preferably started by
calling trace_client/2 on another Erlang node) connects, all trace messages are sent over the IP network for
further processing by the remote client.

Using a trace port significantly lowers the overhead imposed by using tracing.

The file trace driver expects a filename or a wrap files specification as parameter. A file is written with a high degree
of buffering, why all trace messages are not guaranteed to be saved in the file in case of a system crash. That is the
price to pay for low tracing overhead.

A wrap files specification is used to limit the disk space consumed by the trace. The trace is written to a limited number
of files each with a limited size. The actual filenames are Filename ++ SeqCnt ++ Suffix, where SeqCnt
counts as a decimal string from 0 to WrapCnt and then around again from 0. When a trace term written to the current
file makes it longer than WrapSize, that file is closed, if the number of files in this wrap trace is as many as WrapCnt
the oldest file is deleted then a new file is opened to become the current. Thus, when a wrap trace has been stopped,
there are at most WrapCnt trace files saved with a size of at least WrapSize (but not much bigger), except for the
last file that might even be empty. The default values are WrapSize = 128*1024 and WrapCnt = 8.

The SeqCnt values in the filenames are all in the range 0 through WrapCnt with a gap in the circular sequence.
The gap is needed to find the end of the trace.
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If the WrapSize is specified as {time, WrapTime}, the current file is closed when it has been open more than
WrapTime milliseconds, regardless of it being empty or not.

The ip trace driver has a queue of QueSize messages waiting to be delivered. If the driver cannot deliver messages
as fast as they are produced by the runtime system, a special message is sent, which indicates how many messages that
are dropped. That message will arrive at the handler function specified in trace_client/3 as the tuple {drop,
N} where N is the number of consecutive messages dropped. In case of heavy tracing, drop's are likely to occur, and
they surely occur if no client is reading the trace messages. The default value of QueSize is 200.

flush_trace_port()
Equivalent to flush_trace_port(node()).

flush_trace_port(Nodename) -> ok | {error, Reason}
Equivalent to trace_port_control(Nodename,flush).

trace_port_control(Operation)
Equivalent to trace_port_control(node(),Operation).

trace_port_control(Nodename,Operation) -> ok | {ok, Result} | {error, Reason}
Types:

Nodename = atom()

This function is used to do a control operation on the active trace port driver on the given node (Nodename). Which
operations are allowed as well as their return values depend on which trace driver is used.

Returns either ok or {ok, Result} if the operation was successful, or {error, Reason} if the current tracer
is a process or if it is a port not supporting the operation.

The allowed values for Operation are:

flush

This function is used to flush the internal buffers held by a trace port driver. Currently only the file trace driver
supports this operation. Returns ok.

get_listen_port

Returns {ok, IpPort} where IpPort is the IP port number used by the driver listen socket. Only the ip
trace driver supports this operation.

trace_client(Type, Parameters) -> pid()
Types:

Type = ip | file | follow_file

Parameters = Filename | WrapFilesSpec | IPClientPortSpec

Filename = string() | [string()] | atom()

WrapFilesSpec = see trace_port/2

Suffix = string()

IpClientPortSpec = PortNumber | {Hostname, PortNumber}

PortNumber = integer()

Hostname = string()
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This function starts a trace client that reads the output created by a trace port driver and handles it in mostly the same
way as a tracer process created by the tracer/0 function.

If Type is file, the client reads all trace messages stored in the file named Filename or specified by
WrapFilesSpec (must be the same as used when creating the trace, see trace_port/2) and let's the default handler
function format the messages on the console. This is one way to interpret the data stored in a file by the file trace
port driver.

If Type is follow_file, the client behaves as in the file case, but keeps trying to read (and process) more data
from the file until stopped by stop_trace_client/1. WrapFilesSpec is not allowed as second argument for
this Type.

If Type is ip, the client connects to the TCP/IP port PortNumber on the host Hostname, from where it reads trace
messages until the TCP/IP connection is closed. If no Hostname is specified, the local host is assumed.

As an example, one can let trace messages be sent over the network to another Erlang node (preferably not distributed),
where the formatting occurs:

On the node stack there's an Erlang node ant@stack, in the shell, type the following:

ant@stack> dbg:tracer(port, dbg:trace_port(ip,4711)).
<0.17.0>
ant@stack> dbg:p(self(), send).
{ok,1}

All trace messages are now sent to the trace port driver, which in turn listens for connections on the TCP/IP port 4711.
If we want to see the messages on another node, preferably on another host, we do like this:

-> dbg:trace_client(ip, {"stack", 4711}).
<0.42.0>

If we now send a message from the shell on the node ant@stack, where all sends from the shell are traced:

ant@stack> self() ! hello.
hello

The following will appear at the console on the node that started the trace client:

(<0.23.0>) <0.23.0> ! hello
(<0.23.0>) <0.22.0> ! {shell_rep,<0.23.0>,{value,hello,[],[]}}

The last line is generated due to internal message passing in the Erlang shell. The process id's will vary.

trace_client(Type, Parameters, HandlerSpec) -> pid()
Types:

Type = ip | file | follow_file

Parameters = Filename | WrapFilesSpec | IPClientPortSpec

Filename = string() | [string()] | atom()

WrapFilesSpec = see trace_port/2

Suffix = string()

IpClientPortSpec = PortNumber | {Hostname, PortNumber}

PortNumber = integer()

Hostname = string()
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HandlerSpec = {HandlerFun, InitialData}

HandlerFun = fun() (two arguments)

InitialData = term()

This function works exactly as trace_client/2, but allows you to write your own handler function. The handler
function works mostly as the one described in tracer/2, but will also have to be prepared to handle trace messages
of the form {drop, N}, where N is the number of dropped messages. This pseudo trace message will only occur
if the ip trace driver is used.

For trace type file, the pseudo trace message end_of_trace will appear at the end of the trace. The return value
from the handler function is in this case ignored.

stop_trace_client(Pid) -> ok
Types:

Pid = pid()

This function shuts down a previously started trace client. The Pid argument is the process id returned from the
trace_client/2 or trace_client/3 call.

get_tracer()
Equivalent to get_tracer(node()).

get_tracer(Nodename) -> {ok, Tracer}
Types:

Nodename = atom()

Tracer = port() | pid() | {module(), term()}

Returns the process, port or tracer module to which all trace messages are sent.

stop() -> ok
Stops the dbg server, clears all trace flags for all processes, clears all trace patterns for all functions, clears trace
patterns for send/receive, shuts down all trace clients, and closes all trace ports.

Simple examples - tracing from the shell
The simplest way of tracing from the Erlang shell is to use dbg:c/3 or dbg:c/4, e.g. tracing the function
dbg:get_tracer/0:

(tiger@durin)84> dbg:c(dbg,get_tracer,[]).
(<0.154.0>) <0.152.0> ! {<0.154.0>,{get_tracer,tiger@durin}}
(<0.154.0>) out {dbg,req,1}
(<0.154.0>) << {dbg,{ok,<0.153.0>}}
(<0.154.0>) in {dbg,req,1}
(<0.154.0>) << timeout
{ok,<0.153.0>}
(tiger@durin)85>

Another way of tracing from the shell is to explicitly start a tracer and then set the trace flags of your choice on the
processes you want to trace, e.g. trace messages and process events:
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(tiger@durin)66> Pid = spawn(fun() -> receive {From,Msg} -> From ! Msg end end).
<0.126.0>
(tiger@durin)67> dbg:tracer().
{ok,<0.128.0>}
(tiger@durin)68> dbg:p(Pid,[m,procs]).
{ok,[{matched,tiger@durin,1}]}
(tiger@durin)69> Pid ! {self(),hello}.
(<0.126.0>) << {<0.116.0>,hello}
{<0.116.0>,hello}
(<0.126.0>) << timeout
(<0.126.0>) <0.116.0> ! hello
(<0.126.0>) exit normal
(tiger@durin)70> flush().
Shell got hello
ok
(tiger@durin)71>

If you set the call trace flag, you also have to set a trace pattern for the functions you want to trace:

(tiger@durin)77> dbg:tracer().
{ok,<0.142.0>}
(tiger@durin)78> dbg:p(all,call).
{ok,[{matched,tiger@durin,3}]}
(tiger@durin)79> dbg:tp(dbg,get_tracer,0,[]).
{ok,[{matched,tiger@durin,1}]}
(tiger@durin)80> dbg:get_tracer().
(<0.116.0>) call dbg:get_tracer()
{ok,<0.143.0>}
(tiger@durin)81> dbg:tp(dbg,get_tracer,0,[{'_',[],[{return_trace}]}]).
{ok,[{matched,tiger@durin,1},{saved,1}]}
(tiger@durin)82> dbg:get_tracer().
(<0.116.0>) call dbg:get_tracer()
(<0.116.0>) returned from dbg:get_tracer/0 -> {ok,<0.143.0>}
{ok,<0.143.0>}
(tiger@durin)83>

Advanced topics - combining with seq_trace
The dbg module is primarily targeted towards tracing through the erlang:trace/3 function. It is sometimes
desired to trace messages in a more delicate way, which can be done with the help of the seq_trace module.

seq_trace implements sequential tracing (known in the AXE10 world, and sometimes called "forlopp tracing").
dbg can interpret messages generated from seq_trace and the same tracer function for both types of tracing can
be used. The seq_trace messages can even be sent to a trace port for further analysis.

As a match specification can turn on sequential tracing, the combination of dbg and seq_trace can be quite
powerful. This brief example shows a session where sequential tracing is used:
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1> dbg:tracer().
{ok,<0.30.0>}
2> {ok, Tracer} = dbg:get_tracer().
{ok,<0.31.0>}
3> seq_trace:set_system_tracer(Tracer).
false
4> dbg:tp(dbg, get_tracer, 0, [{[],[],[{set_seq_token, send, true}]}]).
{ok,[{matched,nonode@nohost,1},{saved,1}]}
5> dbg:p(all,call).
{ok,[{matched,nonode@nohost,22}]}
6> dbg:get_tracer(), seq_trace:set_token([]).
(<0.25.0>) call dbg:get_tracer()
SeqTrace [0]: (<0.25.0>) <0.30.0> ! {<0.25.0>,get_tracer} [Serial: {2,4}]
SeqTrace [0]: (<0.30.0>) <0.25.0> ! {dbg,{ok,<0.31.0>}} [Serial: {4,5}]
{1,0,5,<0.30.0>,4}

This session sets the system_tracer to the same process as the ordinary tracer process (i. e. <0.31.0>) and sets the trace
pattern for the function dbg:get_tracer to one that has the action of setting a sequential token. When the function
is called by a traced process (all processes are traced in this case), the process gets "contaminated" by the token and
seq_trace messages are sent both for the server request and the response. The seq_trace:set_token([])
after the call clears the seq_trace token, why no messages are sent when the answer propagates via the shell to the
console port. The output would otherwise have been more noisy.

Note of caution
When tracing function calls on a group leader process (an IO process), there is risk of causing a deadlock. This will
happen if a group leader process generates a trace message and the tracer process, by calling the trace handler function,
sends an IO request to the same group leader. The problem can only occur if the trace handler prints to tty using an
io function such as format/2. Note that when dbg:p(all,call) is called, IO processes are also traced. Here's
an example:

%% Using a default line editing shell
1> dbg:tracer(process, {fun(Msg,_) -> io:format("~p~n", [Msg]), 0 end, 0}).
{ok,<0.37.0>}
2> dbg:p(all, [call]).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tp(mymod,[{'_',[],[]}]).
{ok,[{matched,nonode@nohost,0},{saved,1}]}
4> mymod: % TAB pressed here
%% -- Deadlock --

Here's another example:

%% Using a shell without line editing (oldshell)
1> dbg:tracer(process).
{ok,<0.31.0>}
2> dbg:p(all, [call]).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tp(lists,[{'_',[],[]}]).
{ok,[{matched,nonode@nohost,0},{saved,1}]}
% -- Deadlock --

The reason we get a deadlock in the first example is because when TAB is pressed to expand the function name,
the group leader (which handles character input) calls mymod:module_info(). This generates a trace message
which, in turn, causes the tracer process to send an IO request to the group leader (by calling io:format/2). We
end up in a deadlock.
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In the second example we use the default trace handler function. This handler prints to tty by sending IO requests to
the user process. When Erlang is started in oldshell mode, the shell process will have user as its group leader and
so will the tracer process in this example. Since user calls functions in lists we end up in a deadlock as soon as
the first IO request is sent.

Here are a few suggestions for how to avoid deadlock:

• Don't trace the group leader of the tracer process. If tracing has been switched on for all processes,
call dbg:p(TracerGLPid,clear) to stop tracing the group leader (TracerGLPid).
process_info(TracerPid,group_leader) tells you which process this is (TracerPid is returned
from dbg:get_tracer/0).

• Don't trace the user process if using the default trace handler function.

• In your own trace handler function, call erlang:display/1 instead of an io function or, if
user is not used as group leader, print to user instead of the default group leader. Example:
io:format(user,Str,Args).
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dyntrace
Erlang module

This module implements interfaces to dynamic tracing, should such be compiled into the virtual machine. For a
standard and/or commercial build, no dynamic tracing is available, in which case none of the functions in this module
is usable or give any effect.

Should dynamic tracing be enabled in the current build, either by configuring with ./configure --with-
dynamic-trace=dtrace or with ./configure --with-dynamic-trace=systemtap, the module can
be used for two things:

• Trigger the user-probe user_trace_i4s4 in the NIF library dyntrace.so by calling dyntrace:p/
{1,2,3,4,5,6,7,8}.

• Set a user specified tag that will be present in the trace messages of both the efile_drv and the user-probe
mentioned above.

Both building with dynamic trace probes and using them is experimental and unsupported by Erlang/OTP. It is included
as an option for the developer to trace and debug performance issues in their systems.

The original implementation is mostly done by Scott Lystiger Fritchie as an Open Source Contribution and it should be
viewed as such even though the source for dynamic tracing as well as this module is included in the main distribution.
However, the ability to use dynamic tracing of the virtual machine is a very valuable contribution which OTP has
every intention to maintain as a tool for the developer.

How to write d programs or systemtap scripts can be learned from books and from a lot of pages on the Internet.
This manual page does not include any documentation about using the dynamic trace tools of respective platform.
The examples directory of the runtime_tools application however contains comprehensive examples of both
d and systemtap programs that will help you get started. Another source of information is the dtrace and systemtap
chapters in the Runtime Tools Users' Guide.

Exports

available() -> boolean()
This function uses the NIF library to determine if dynamic tracing is available. Usually calling erlang:system_info/1
is a better indicator of the availability of dynamic tracing.

The function will throw an exception if the dyntrace NIF library could not be loaded by the on_load function of
this module.

p() -> true | false | error | badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a trace
message only containing the user tag and zeroes/empty strings in all other fields.

p(integer() | string()) -> true | false | error | badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer or string parameter in the first integer/string field.
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p(integer() | string(), integer() | string()) -> true | false | error |
badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a
trace message containing the user tag and the integer() or string() parameters as the first fields of respective type.
integer() parameters should be put before any string() parameters. I.e. p(1,"Hello") is ok, as is p(1,1) and
p("Hello","Again"), but not p("Hello",1).

p(integer() | string(), integer() | string(), integer() | string()) -> true |
false | error | badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, as in p/2.

p(integer() | string(), integer() | string(), integer() | string(), integer()
| string()) -> true | false | error | badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, as in p/2.

p(integer(), integer() | string(), integer() | string(), integer() |
string(), string()) -> true | false | error | badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, as in p/2.

There can be no more than four parameters of any type (integer() or string()), so the first parameter has to be an
integer() and the last a string().

p(integer(), integer(), integer() | string(), integer() | string(), string(),
string()) -> true | false | error | badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, as in p/2.

There can be no more than four parameters of any type (integer() or string()), so the first two parameters has to be
integer()'s and the last two string()'s.

p(integer(), integer(), integer(), integer() | string(), string(), string(),
string()) -> true | false | error | badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, as in p/2.

There can be no more than four parameters of any type (integer() or string()), so the first three parameters has to be
integer()'s and the last three string()'s.
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p(integer(), integer(), integer(), integer(), string(), string(), string(),
string()) -> true | false | error | badarg
Calling this function will trigger the "user" trace probe user_trace_i4s4 in the dyntrace NIF module, sending a trace
message containing all the integer()'s and string()'s provided, as well as any user tag set in the current process.

get_tag() -> binary() | undefined
This function returns the user tag set in the current process. If no tag is set or dynamic tracing is not available, it
returns undefined

get_tag() -> binary() | undefined
This function returns the user tag set in the current process or, if no user tag is present, the last user tag sent to the
process together with a message (in the same way as sequential trace tokens are spread to other processes together
with messages. For an explanation of how user tags can be spread together with messages, see spread_tag/1. If no tag
is found or dynamic tracing is not available, it returns undefined

put_tag(Item) -> binary() | undefined
Types:

Item = iodata()

This function sets the user tag of the current process. The user tag is a binary(), but can be specified as any iodata(),
which is automatically converted to a binary by this function.

The user tag is provided to the user probes triggered by calls top dyntrace:p/{1,2,3,4,5,6,7,8} as well as
probes in the efile_driver. In the future, user tags might be added to more probes.

The old user tag (if any) is returned, or undefined if no user tag was present or dynamic tracing is not enabled.

spread_tag(boolean()) -> TagData
Types:

TagData = opaque data that can be used as parameter to restore_tag/1

This function controls if user tags are to be spread to other processes with the next message. Spreading of user tags
work like spreading of sequential trace tokens, so that a received user tag will be active in the process until the next
message arrives (if that message does not also contain the user tag.

This functionality is used when a client process communicates with a file i/o-server to spread the user tag to the I/
O-server and then down to the efile_drv driver. By using spread_tag/1 and restore_tag/1, one can enable
or disable spreading of user tags to other processes and then restore the previous state of the user tag. The TagData
returned from this call contains all previous information so the state (including any previously spread user tags) will
be completely restored by a later call to restore_tag/1.

The file module already spread's tags, so there is no need to manually call these function to get user tags spread to
the efile driver through that module.

The most use of this function would be if one for example uses the io module to communicate with an I/O-server for
a regular file, like in the following example:

f() ->
   {ok, F} = file:open("test.tst",[write]),
   Saved = dyntrace:spread_tag(true),
   io:format(F,"Hello world!",[]),
   dyntrace:restore_tag(Saved),
   file:close(F).
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In this example, any user tag set in the calling process will be spread to the I/O-server when the io:format call is done.

restore_tag(TagData) -> true
Types:

TagData = opaque data returned by spread_tag/1

Restores the previous state of user tags and their spreading as it was before a call to spread_tag/1. Note that the restoring
is not limited to the same process, one can utilize this to turn off spreding in one process and restore it in a newly
created, the one that actually is going to send messages:

f() ->
    TagData=dyntrace:spread_tag(false),
    spawn(fun() ->
             dyntrace:restore_tag(TagData),
             do_something()
          end),
    do_something_else(),
    dyntrace:restore_tag(TagData).

Correctly handling user tags and their spreading might take some effort, as Erlang programs tend to send and receive
messages so that sometimes the user tag gets lost due to various things, like double receives or communication with a
port (ports do not handle user tags, in the same way as they do not handle regular sequential trace tokens).
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erts_alloc_config
Erlang module

Warning:

This (experimental) tool no longer produces good configurations and cannot be fixed in a reasonably backwards
compatible manner. It has therefore been scheduled for removal in OTP 26.0.

erts_alloc(3) is an Erlang Run-Time System internal memory allocator library. erts_alloc_config is intended
to be used to aid creation of an erts_alloc(3) configuration that is suitable for a limited number of runtime scenarios.
The configuration that erts_alloc_config produce is intended as a suggestion, and may need to be adjusted
manually.

The configuration is created based on information about a number of runtime scenarios. It is obviously impossible to
foresee every runtime scenario that can occur. The important scenarios are those that cause maximum or minimum
load on specific memory allocators. Load in this context is total size of memory blocks allocated.

The current implementation of erts_alloc_config concentrate on configuration of multi-block carriers.
Information gathered when a runtime scenario is saved is mainly current and maximum use of multi-block carriers. If
a parameter that change the use of multi-block carriers is changed, a previously generated configuration is invalid and
erts_alloc_config needs to be run again. It is mainly the single block carrier threshold that effects the use of
multi-block carriers, but other single-block carrier parameters might as well. If another value of a single block carrier
parameter than the default is desired, use the desired value when running erts_alloc_config.

A configuration is created in the following way:

• Pass the +Mea config command-line flag to the Erlang runtime system you are going to use for creation of the
allocator configuration. It will disable features that prevent erts_alloc_config from doing its job. Note,
you should not use this flag when using the created configuration. Also note that it is important that you use the
same amount of schedulers when creating the configuration as you are going the use on the system using the
configuration.

• Run your applications with different scenarios (the more the better) and save information about each scenario by
calling save_scenario/0. It may be hard to know when the applications are at an (for erts_alloc_config)
important runtime scenario. A good approach may therefore be to call save_scenario/0 repeatedly, e.g. once every
tenth second. Note that it is important that your applications reach the runtime scenarios that are important for
erts_alloc_config when you are saving scenarios; otherwise, the configuration may perform bad.

• When you have covered all scenarios, call make_config/1 in order to create a configuration. The configuration
is written to a file that you have chosen. This configuration file can later be read by an Erlang runtime-system at
startup. Pass the command line argument -args_file FileName to the erl(1) command.

• The configuration produced by erts_alloc_config may need to be manually adjusted as already stated.
Do not modify the file produced by erts_alloc_config; instead, put your modifications in another file and
load this file after the file produced by erts_alloc_config. That is, put the -args_file FileName argument
that reads your modification file later on the command-line than the -args_file FileName argument that reads
the configuration file produced by erts_alloc_config. If a memory allocation parameter appear multiple
times, the last version of will be used, i.e., you can override parameters in the configuration file produced by
erts_alloc_config. Doing it this way simplifies things when you want to rerun erts_alloc_config.
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Note:

The configuration created by erts_alloc_config may perform bad, ever horrible, for runtime scenarios
that are very different from the ones saved when creating the configuration. You are, therefore, advised to
rerun erts_alloc_config if the applications run when the configuration was made are changed, or if
the load on the applications have changed since the configuration was made. You are also advised to rerun
erts_alloc_config if the Erlang runtime system used is changed.

erts_alloc_config saves information about runtime scenarios and performs computations in a server that is
automatically started. The server register itself under the name '__erts_alloc_config__'.

Exports

save_scenario() -> ok | {error, Error}
Types:

Error = term()

save_scenario/0 saves information about the current runtime scenario. This information will later be used when
make_config/0, or make_config/1 is called.

The first time save_scenario/0 is called a server will be started. This server will save runtime scenarios. All
saved scenarios can be removed by calling stop/0.

make_config() -> ok | {error, Error}
Types:

Error = term()

This is the same as calling make_config(group_leader()).

make_config(FileNameOrIODev) -> ok | {error, Error}
Types:

FileNameOrIODev = string() | io_device()

Error = term()

make_config/1 uses the information previously saved by save_scenario/0 in order to produce an erts_alloc
configuration. At least one scenario have had to be saved. All scenarios previously saved will be used when creating
the configuration.

If FileNameOrIODev is a string(), make_config/1 will use FileNameOrIODev as a filename. A file
named FileNameOrIODev is created and the configuration will be written to that file. If FileNameOrIODev is
an io_device() (see the documentation of the module io), the configuration will be written to the io device.

stop() -> ok | {error, Error}
Types:

Error = term()

Stops the server that saves runtime scenarios.

See Also
erts_alloc(3), erl(1), io(3)
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msacc
Erlang module

This module implements some convenience functions for analyzing microstate accounting data.
For details about how to use the basic api and what the different states represent see
erlang:statistics(microstate_accounting).

Basic Scenario

1> msacc:start(1000).
ok
2> msacc:print().
Average thread real-time    : 1000513 us
Accumulated system run-time :    2213 us
Average scheduler run-time  :    1076 us

        Thread      aux check_io emulator       gc    other     port    sleep

Stats per thread:
     async( 0)    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%  100.00%
     async( 1)    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%  100.00%
       aux( 1)    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%   99.99%
 scheduler( 1)    0.00%    0.03%    0.13%    0.00%    0.01%    0.00%   99.82%
 scheduler( 2)    0.00%    0.00%    0.00%    0.00%    0.03%    0.00%   99.97%

Stats per type:
         async    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%  100.00%
           aux    0.00%    0.00%    0.00%    0.00%    0.00%    0.00%   99.99%
     scheduler    0.00%    0.02%    0.06%    0.00%    0.02%    0.00%   99.89%
ok

This first command enables microstate accounting for 1000 milliseconds. See start/0, stop/0, reset/0 and
start/1 for more details. The second command prints the statistics gathered during that time. First three general
statistics are printed.

Average real-time
The average time spent collecting data in the threads. This should be close to the time which data was
collected.

System run-time
The total run-time of all threads in the system. This is what you get if you call
msacc:stats(total_runtime,Stats).

Average scheduler run-time
The average run-time for the schedulers. This is the average amount of time the schedulers did not sleep.

Then one column per state is printed with a the percentage of time this thread spent in the state out of it's own real-
time. After the thread specific time, the accumulated time for each type of thread is printed in a similar format.

Since we have the average real-time and the percentage spent in each state we can easily calculate the time spent in
each state by multiplying Average thread real-time with Thread state %, i.e. to get the time Scheduler
1 spent in the emulator state we do 1000513us * 0.13% = 1300us.

Data Types
msacc_data() = [msacc_data_thread()]
msacc_data_thread() =
    #{'$type' := msacc_data,
      type := msacc_type(),
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      id := msacc_id(),
      counters := msacc_data_counters()}
msacc_data_counters() = #{msacc_state() => integer() >= 0}
A map containing the different microstate accounting states and the number of microseconds spent in it.

msacc_stats() = [msacc_stats_thread()]
msacc_stats_thread() =
    #{'$type' := msacc_stats,
      type := msacc_type(),
      id := msacc_id(),
      system := float(),
      counters := msacc_stats_counters()}
A map containing information about a specific thread. The percentages in the map can be either run-time or real-time
depending on if runtime or realtime was requested from stats/2. system is the percentage of total system time
for this specific thread.

msacc_stats_counters() =
    #{msacc_state() => #{thread := float(), system := float()}}
A map containing the different microstate accounting states. Each value in the map contains another map with the
percentage of time that this thread has spent in the specific state. Both the percentage of system time and the time
for that specific thread is part of the map.

msacc_type() =
    aux | async | dirty_cpu_scheduler | dirty_io_scheduler |
    poll | scheduler
msacc_id() = integer() >= 0
msacc_state() =
    alloc | aux | bif | busy_wait | check_io | emulator | ets |
    gc | gc_fullsweep | nif | other | port | send | sleep | timers
The different states that a thread can be in. See erlang:statistics(microstate_accounting) for details.

msacc_print_options() = #{system => boolean()}
The different options that can be given to print/2.

Exports

available() -> boolean()
This function checks whether microstate accounting is available or not.

start() -> boolean()
Start microstate accounting. Returns whether it was previously enabled or disabled.

start(Time) -> true
Types:

Time = timeout()
Resets all counters and then starts microstate accounting for the given milliseconds.
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stop() -> boolean()
Stop microstate accounting. Returns whether is was previously enabled or disabled.

reset() -> boolean()
Reset microstate accounting counters. Returns whether is was enabled or disabled.

print() -> ok
Prints the current microstate accounting to standard out. Same as msacc:print(msacc:stats(),#{}).

print(DataOrStats) -> ok
Types:

DataOrStats = msacc_data() | msacc_stats()
Print the given microstate statistics values to stdout. Same as msacc:print(DataOrStats,#{}).

print(DataOrStats, Options) -> ok
Types:

DataOrStats = msacc_data() | msacc_stats()
Options = msacc_print_options()

Print the given microstate statistics values to standard out. With many states this can be quite verbose. See the top of
this reference manual for a brief description of what the fields mean.

It is possible to print more specific types of statistics by first manipulating the DataOrStats using stats/2. For
instance if you want to print the percentage of run-time for each thread you can do:

msacc:print(msacc:stats(runtime,msacc:stats())).

If you want to only print run-time per thread type you can do:

msacc:print(msacc:stats(type,msacc:stats(runtime,msacc:stats()))).

Options

system
Print percentage of time spent in each state out of system time as well as thread time. Default: false.

print(FileOrDevice, DataOrStats, Options) -> ok
Types:

FileOrDevice = file:filename() | io:device()
DataOrStats = msacc_data() | msacc_stats()
Options = msacc_print_options()

Print the given microstate statistics values to the given file or device. The other arguments behave the same way as
for print/2.

stats() -> msacc_data()
Returns a runtime system independent version of the microstate statistics data presented by
erlang:statistics(microstate_accounting). All counters have been normalized to be in microsecond
resolution.
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stats(Analysis, Stats) -> integer() >= 0
Types:

Analysis = system_realtime | system_runtime
Stats = msacc_data()

Returns the system time for the given microstate statistics values. System time is the accumulated time of all threads.

realtime
Returns all time recorded for all threads.

runtime
Returns all time spent doing work for all threads, i.e. all time not spent in the sleep state.

stats(Analysis, Stats) -> msacc_stats()
Types:

Analysis = realtime | runtime
Stats = msacc_data()

Returns fractions of real-time or run-time spent in the various threads from the given microstate statistics values.

stats(Analysis, StatsOrData) -> msacc_data() | msacc_stats()
Types:

Analysis = type
StatsOrData = msacc_data() | msacc_stats()

Returns a list of microstate statistics values where the values for all threads of the same type has been merged.

to_file(Filename) -> ok | {error, file:posix()}
Types:

Filename = file:name_all()
Dumps the current microstate statistics counters to a file that can be parsed with file:consult/1.

from_file(Filename) -> msacc_data()
Types:

Filename = file:name_all()
Read a file dump produced by to_file(Filename).
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scheduler
Erlang module

This module contains utility functions for easy measurement and calculation of scheduler utilization. It act as a wrapper
around the more primitive API erlang:statistics(scheduler_wall_time).

The simplest usage is to call the blocking scheduler:utilization(Seconds).

For non blocking and/or continuous calculation of scheduler utilization, the recommended usage is:

• First call erlang:system_flag(scheduler_wall_time,true) to enable scheduler wall time
measurements.

• Call get_sample/0 to collect samples with some time in between.

• Call utilization/2 to calculate the scheduler utilization in the interval between two samples.

• When done call erlang:system_flag(scheduler_wall_time,false) to disable scheduler wall
time measurements and avoid unecessary cpu overhead.

To get correct values from utilization/2, it is important that scheduler_wall_time is kept
enabled during the entire interval between the two samples. To ensure this, the process that called
erlang:system_flag(scheduler_wall_time,true) must be kept alive, as scheduler_wall_time
will automatically be disabled if it terminates.

Data Types
sched_sample()
sched_type() = normal | cpu | io
sched_id() = integer()
sched_util_result() =
    [{sched_type(), sched_id(), float(), string()} |
     {total, float(), string()} |
     {weighted, float(), string()}]
A list of tuples containing results for individual schedulers as well as aggregated averages. Util is the scheduler
utilization as a floating point value between 0.0 and 1.0. Percent is the same utilization as a more human readable
string expressed in percent.

{normal, SchedulerId, Util, Percent}
Scheduler utilization of a normal scheduler with number SchedulerId. Schedulers that are not online will
also be included. Online schedulers have the lowest SchedulerId.

{cpu, SchedulerId, Util, Percent}
Scheduler utilization of a dirty-cpu scheduler with number SchedulerId.

{io, SchedulerId, Util, Percent}
Scheduler utilization of a dirty-io scheduler with number SchedulerId. This tuple will only exist if both
samples were taken with sample_all/0.

{total, Util, Percent}
Total utilization of all normal and dirty-cpu schedulers.

{weighted, Util, Percent}
Total utilization of all normal and dirty-cpu schedulers, weighted against maximum amount of available CPU
time.
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Exports

get_sample() -> sched_sample() | undefined
Returns a scheduler utilization sample for normal and dirty-cpu schedulers. Returns undefined if system flag
scheduler_wall_time has not been enabled.

get_sample_all() -> sched_sample() | undefined
Return a scheduler utilization sample for all schedulers, including dirty-io schedulers. Returns undefined if system
flag scheduler_wall_time has not been enabled.

sample() -> sched_sample()
Return a scheduler utilization sample for normal and dirty-cpu schedulers. Will call
erlang:system_flag(scheduler_wall_time,true) first if not already already enabled.

Note:

This function is not recommended as there is no way to detect if scheduler_wall_time already was enabled
or not. If scheduler_wall_time has been disabled between two samples, passing them to utilization/2
will yield invalid results.

Instead use get_sample/0 together with erlang:system_flag(scheduler_wall_time,_).

sample_all() -> sched_sample()
Return a scheduler utilization sample for all schedulers, including dirty-io schedulers. Will call
erlang:system_flag(scheduler_wall_time,true) first if not already already enabled.

Note:

This function is not recommended for same reason as sample/0. Instead use get_sample_all/0 together
with erlang:system_flag(scheduler_wall_time,_).

utilization(Seconds) -> sched_util_result()
Types:

Seconds = integer() >= 1
Measure utilization for normal and dirty-cpu schedulers during Seconds seconds, and then return the result.

Will automatically first enable and then disable scheduler_wall_time.

utilization(Sample) -> sched_util_result()
Types:

Sample = sched_sample()
Calculate scheduler utilizations for the time interval from when Sample was taken and "now". The same as calling
scheduler:utilization(Sample, scheduler:sample_all()).
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Note:

This function is not recommended as it's so easy to get invalid results without noticing. In particular do not do this:

scheduler:utilization(scheduler:sample()). % DO NOT DO THIS!

The above example takes two samples in rapid succession and calculates the scheduler utilization between them.
The resulting values will probably be more misleading than informative.

Instead use scheduler:utilization/2 and call get_sample/0 to get samples with some time in
between.

utilization(Sample1, Sample2) -> sched_util_result()
Types:

Sample1 = Sample2 = sched_sample()

Calculates scheduler utilizations for the time interval between the two samples obtained from calling get_sample/0
or get_sample_all/0.

This function itself, does not need scheduler_wall_time to be enabled. However, for a correct result,
scheduler_wall_time must have been enabled during the entire interval between the two samples.
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system_information
Erlang module

Exports

sanity_check() -> ok | {failed, Failures}
Types:

Application = atom()
ApplicationVersion = string()
MissingRuntimeDependencies =
    {missing_runtime_dependencies, ApplicationVersion,
     [ApplicationVersion]}
InvalidApplicationVersion =
    {invalid_application_version, ApplicationVersion}
InvalidAppFile = {invalid_app_file, Application}
Failure =
    MissingRuntimeDependencies | InvalidApplicationVersion |
    InvalidAppFile
Failures = [Failure]

Performs a sanity check on the system. If no issues were found, ok is returned. If issues were found, {failed,
Failures} is returned. All failures found will be part of the Failures list. Currently defined Failure elements
in the Failures list:

InvalidAppFile

An application has an invalid .app file. The second element identifies the application which has the invalid
.app file.

InvalidApplicationVersion

An application has an invalid application version. The second element identifies the application version that is
invalid.

MissingRuntimeDependencies

An application is missing runtime dependencies. The second element identifies the application (with version) that
has missing dependencies. The third element contains the missing dependencies.

Note that this check use application versions that are loaded, or will be loaded when used. You might have
application versions that satisfies all dependencies installed in the system, but if those are not loaded this check
will fail. The system will of course also fail when used like this. This may happen when you have multiple
branched versions of the same application installed in the system, but you do not use a boot script identifying
the correct application version.

Currently the sanity check is limited to verifying runtime dependencies found in the .app files of all applications.
More checks will be introduced in the future. This implies that the return type will change in the future.

Note:

An ok return value only means that sanity_check/0 did not find any issues, not that no issues exist.
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to_file(FileName) -> ok | {error, Reason}
Types:

FileName = file:name_all()
Reason = file:posix() | badarg | terminated | system_limit

Writes miscellaneous system information to file. This information will typically be requested by the Erlang/OTP team
at Ericsson AB when reporting an issue.
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